О дедуктивной непригодности базисного множества акцидентальных суждений Н. А. Васильева и их отрицаний в силлогистике Силоренко О. И.

Сидоренко Олег Иванович / Sidorenko Oleg Īvanovich — кандидат физико-математических наук, главный конструктор, научно-производственное предприятие «Анфас», г. Саратов

Аннотация: представлено доказательство дедуктивной непригодности базисного множества из акцидентальных суждений Н. А. Васильева и их отрицаний в силлогистике, основанное на семантическом методе вычисления результирующих отношений.

Abstract: presented a deductive proof of the unsuitability of the basic set N.A. Vasiliev's accidental judgments and their negations in syllogistic using semantic calculation method of the resulting relations.

Ключевые слова: силлогизм, силлогистика, семантика, результирующие отношения, решение силлогизма, акцидентальное суждение.

Keywords: syllogism, syllogistic, semantics, resulting relations, solution of syllogism, accidental judgment.

Введение

Известно, что выдающийся российский логик Н. А. Васильев негативно относился к частным суждениям типа SiP и SoP аристотелевской и традиционной силлогистик, в которых кванторное слово «некоторые» трактуется как «некоторые, а может быть и все». Такие суждения называются неопределенночастными. «Н. А. Васильев считал, что они не выражают законченного знания о своём субъекте, продиктованы неполнотой информации и открыто содержат в себе задачу выяснить, все ли упомянутые предметы обладают неким свойством или не все» [3]. Такие суждения, по мнению Васильева, не могут считаться подлинно научными - суждениями о понятиях. «Неопределённые суждения, - пишет он, - могут фигурировать только в качестве научной проблемы, а не научного решения» [4, с. 21] (цит. по [3]). По Васильеву: «Нет частных суждений. Все суждения относительно понятий суть суждения общие» [5, с. 20] (цит. по [2]). К ним относятся хорошо известные из аристотелевской логики общеутвердительное суждение с логической формой «Всякие S суть P», общеотрицательное суждение с формой « Ни один S не есть Р» и предложенный Васильевым третий тип суждений о понятии с логической формой «Только некоторые S суть P», которое Васильев предложил называть «суждением акцидентальным, или так называемым частным, ибо в действительности оно общее» [4, с. 26] (цит. по [3]). Суть такого суждения поясняет следующая данная им словесная формулировка: «Одни S суть P, а все остальные не суть P» [4, с. 70] (цит. по [3]).

Общие суждения Аристотеля A, E и их отрицания O, I соответственно могут порождать правильные модусы. Например, в первой фигуре силлогизма правильными сильными модусами аристотелевской силлогистики являются следующие 4 модуса: AAA, EAE, AII, EIO [6]. Возникает естественный вопрос: а будут ли аналогично суждениям Аристотеля порождать правильные модусы всевозможные акцидентальные суждения Васильева и их отрицания, если их собрать в одно базисное множество, коль скоро по Васильеву они претендуют на роль общих суждений?

Целью настоящей статьи является аргументированный ответ на этот вопрос.

Базисное множество из акцидентальных суждений Васильева и их отрицаний

Базисное множество всевозможных акцидентальных суждений Васильева и их отрицаний представлено в таблице 1 и является подмножеством суждений квазиуниверсальной силлогистики [8].

Таблица 1. Базисное множество акцидентальных суждений Васильева и их отрицаний

Обозначение логической формы суждения	Условия истинности логической формы	Логическая форма суждения	
IO	7, 11, 15	Только некоторые S суть P	
IO*	13, 14, 15	Только некоторые не- S суть P	
OI	7, 13, 15	Только некоторые P суть S	
OI*	11, 14, 15	Только некоторые не- P суть S	
(IO)'	6, 9, 13, 14	Неверно, что только некоторые S суть P	
(IO*)'	6, 7, 9, 11	Неверно, что только некоторые не- S суть P	
(OI)'	6, 9, 11, 14	Неверно, что только некоторые P суть S	
$(OI^*)'$	6, 7, 9, 13	Неверно, что только некоторые не- P суть S	

Примечание. Знак «'» означает логическую операцию отрицания суждения.

Таблица 2. Семантика отношений Кейнса и условия истинности базисных акцидентальных суждений Васильева и их отрицаний

	Условия истинности суждений								
SP	Проти- воречи- вость	Допол- нитель- ность	Равно- объём- ность	Вклю- чение $S \supset P$	Включение $P \supset S$	Сопод- чинение	Пересе- чение		
	6	7	9	11	13	14	15		
00	0	0	1	1	1	1	1		
01	1	1	0	0	1	1	1		
10	1	1	0	1	0	1	1		
11	0	1	1	1	1	0	1		
10	0	1	0	1	0	0	1		
<i>IO</i> *	0	0	0	0	1	1	1		
OI	0	1	0	0	1	0	1		
OI*	0	0	0	1	0	1	1		
(<i>IO</i>)'	1	0	1	0	1	1	0		
(IO*)'	1	1	1	1	0	0	0		
(<i>OI</i>)'	1	0	1	1	0	1	0		
(<i>OI*</i>)'	1	1	1	0	1	0	0		

Примечание. S – субъект суждения, P – предикат суждения, \supset - знак включения множеств; 0 – отсутствие свойства для терминов и запрещенная комбинация свойств для отношений, 1 – наличие свойства для терминов и разрешенная комбинация свойств для отношений.

Условия истинности базисных суждений в таблице 1 представлены в виде перечисления десятичных номеров семи теоретико-множественных отношений Кейнса между терминами суждения со стороны их объемов, на которых суждение данной логической формы считается истинным исходя из своего смысла. Семантика отношений Кейнса и условия истинности базисных акецидентальных суждений Васильева в двоичном коде представлены в таблице 2 для универсума с ограничениями на термины в части непустоты и неуниверсальности.

Непосредственные выводы

Непосредственные выводы в силлогистике основаны на логических отношениях между суждениями [1]. Из таблицы 2 прямо следует, что между суждениями различных логических форм в рассматриваемой силлогистике существуют следующие отношения:

- 1) контрарность два суждения не могут быть вместе истинными, остальные комбинации значений истинности возможны отсутствует;
- 2) контрадикторность два суждения не могут быть вместе ни истинными, ни ложными : IO, (IO)'; IO*, (IO*)'; OI, (OI)'; OI*, (OI*)' всего 4 пары суждений, являющихся отрицаниями друг друга;
- 3) логическое следование если истинно первое из двух суждений, то второе не может быть ложным, и если ложно второе, то первое не может быть истинным отсутствует;
- 4) субконтрарность два суждения не могут быть вместе ложными, остальные комбинации значений возможны отсутствует;
- 5) независимость в двух суждениях возможны любые комбинации истинностных значений: IO, IO^* ; IO, OI; IO, OI^* ; IO, $(IO^*)'$; IO, (OI)'; IO, (OI)'; IO, $(OI^*)'$; IO^* , OI, IO^* , IO^* ,

Таким образом, среди базисных акцидентальных суждений Васильева и их отрицаний логические следования невозможны.

Опосредованные выводы

Для выявления всех правильных модусов из базисного множества акцидентальных суждений и их отрицаний применим семантический метод вычисления результирующих отношений, предложенный в работе автора [9] и развитый в работах [10], [11]. Он основан на тезисе Альфреда Тарского о том, что понимать суждение означает знать его условия истинности, в качестве которых фигурируют теоретикомножественные отношения между терминами суждения со стороны их объемов. Метод сводит доказательство правильности силлогизма к его решению. В силлогистике решение силлогизмов обеспечивается благодаря её разрешимости, доказанной Л. Лёвенгеймом как теории одноместных предикатов [7]. В про-

цессе решения мы получаем или результаты решения при их наличии, или явные признаки того, что ни-какого решения из данных посылок не существует.

Метод вычисления результирующих отношений применительно к задаче выявления всех правильных модусов некоторой силлогистики заключается в следующем:

- 1. Для каждой упорядоченной пары базисных суждений рассматриваемой силлогистики записывают обозначения логических форм посылок и их условия истинности в (скобках) в виде перечисления десятичных номеров отношений между терминами, при которых соответствующие посылкам суждения являются истинными. При этом в первой посылке субъектом и предикатом считаются термины S и M, а во второй M и P, что соответствует первой фигуре силлогизма, где M средний термин силлогизма, S и P крайние термины.
- 2. Для декартова произведения отношений в посылках выбранной пары суждений из ключевой таблицы 3 [11] выписывают результирующие отношения (одно или несколько), порождаемые посылками в конфигурации SM-MP, соответствующей первой фигуре силлогизма. Справедливость правил порождения результирующих отношений в традиционной силлогистике, представленных в таблице 3, доказана полным перебором всех модельных схем для трех терминов силлогизма, а также аналитическим методом [12], [13]. Указанной таблицей нужно пользоваться подобно тому, как мы пользуемся таблицей умножения в арифметике.

Таблица 3. Результирующие отношения в силлогистике с ограничениями на термины в части непустоты и неуниверсальности

Nº	Посылки <i>SM, MP</i>	Заключение SP	N₂	Посылки <i>SM, MP</i>	Заключение SP	
1	6, 6	9	26	11, 13	7,9,11,13,15	
2	6, 7	13	27	11, 14	6,7,11,14,15	
3	6, 9	6	28	11, 15	7,11,15	
4	6, 11	14	29	13, 6	14	
5	6, 13	7	30	13, 7	6,7,13,14,15	
6	6, 14	11	31	13, 9	13	
7	6, 15	15	32	13, 11	9,11,13,14,15	
8	7, 6	11	33	13, 13	13	
9	7, 7	7,9,11,13,15	34	13, 14	14	
10	7, 9	7	35	13, 15	13,14,15	
11	7, 11	6,7,11,14,15	36	14, 6	13	
12	7, 13	7	37	14, 7	13	
13	7, 14	11	38	14, 9	14	
14	7, 15	7,11,15	39	14, 11	14	
15	9, 6	6	40	14, 13	6,7,13,14,15	
16	9, 7	7	41	14, 14	9,11,13,14,15	
17	9, 9	9	42	14, 15	13,14,15	
18	9, 11	11	43	15, 6	15	
19	9, 13	13	44	15, 7	7,13,15	
20	9, 14	14	45	15, 9	15	
21	9, 15	15	46	15, 11	11,14,15	
22	11, 6	7	47	15, 13	7,13,15	
23	11, 7	7	48	15, 14	11,14,15	
24	11, 9	11	40	15 15	6,7,9,11,13,14,15	
25	11, 11	11	49	15, 15		

- 3. Составляют перечень полученных по п. 2 результирующих отношений (Р.О.), в который включают только разные отношения без повторений.
- 4. Выписывают из базисного множества те суждения, условия истинности которых покрывают результирующие отношения (т.е. включают их в себя).
- 5. Из нескольких возможных решений выбирают самое «сильное», расположенное в верхней части диаграммы логического следования суждений (при его наличии) и обладающее наименьшей степенью неопределенности (т.е. меньшим числом условий истинности).

- 6. Для представления результата в общепринятой форме, соответствующей конфигурации посылок MP SM, переставляют посылки местами.
- 7. Для получения результатов вычисления в других фигурах силлогизма производят взаимные замены отношений $11 \leftrightarrow 13$ в условиях истинности посылок в соответствии с фигурой, либо используют свойство силлогистической полноты базисного множества суждений силлогистики (при его наличии) и производят взаимную замену определенных суждений в соответствующих фигуре посылках в результатах вычислений по первой фигуре.

Свойство силлогистической полноты базисного множества суждений силлогистики с ограничениями на термины в части непустоты и неуниверсальности, о котором впервые было заявлено в работе [9], состоит в том, что если это множество содержит суждение, логическая форма которого истинна на отношении 11, то оно должно быть также истинно и на отношении 13, и, наоборот, при полном совпадении других отношений. Справедливость утверждения следует из того, что среди всех возможных семи отношений между терминами в традиционной силлогистике только два отношения 11 и 13 имеют разные значения истинности на наборах с неодинаковыми значениями истинности терминов (см. таблицу 2).

Ниже приведены вычисления для акцидентальных суждений.

```
\begin{array}{lll} IO~(7,11,15), IO~(7,11,15) \rightarrow -~;\\ 7,7 \rightarrow 7,9,11,13,15; & 11,7 \rightarrow 7; & 15,7 \rightarrow 7,13,15;\\ 7,11 \rightarrow 6,7,11,14,15; & 11,11 \rightarrow 11; & 15,11 \rightarrow 11,14,15;\\ 7,15 \rightarrow 7,11,15; & 11,15 \rightarrow 7,11,15; & 15,15 \rightarrow 6,7,9,11,13,14,15;\\ P.O.:~6,7,9,11,13,14,15. \end{array}
```

В дальнейшем для упрощения записей из членов декартова произведения отношений при выполнении п. 2 будем оставлять только те из них, которые в соответствии с п. 4 сразу определяют отсутствие решения. В этом случае вместо Р.О. будем иметь неполное Р.О.

```
IO(7,11,15), IO*(13,14,15) \rightarrow -;
11,13 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
IO(7,11,15), OI(7,13,15) \rightarrow -;
7,7 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
IO(7,11,15), OI^*(11,14,15) \rightarrow -;
7,11 \rightarrow 6,7,11,14,15;
P.O.: 6,7,11,14,15.
IO(7,11,15), (IO)'(6,9,13,14) \rightarrow -;
11,13 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
IO(7,11,15), (IO*)'(6,7,9,11) \rightarrow -;
7,7 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
IO(7,11,15), (OI)'(6,9,11,14) \rightarrow -;
7.11 \rightarrow 6.7.11.14.15:
P.O.: 6,7,11,14,15.
IO(7,11,15), (OI^*)'(6,7,9,13) \rightarrow -;
7,7 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
IO^* (13,14,15), IO (7,11,15) \rightarrow -;
13,7 \rightarrow 6,7,13,14,15;
P.O.: 6,7,13,14,15.
IO^* (13,14,15), IO^* (13,14,15) \rightarrow -;
14,13 \rightarrow 6,7,13,14,15;
P.O.: 6,7,13,14,15.
IO^* (13,14,15), OI (7,13,15) \rightarrow -;
13,7 \rightarrow 6,7,13,14,15;
P.O.: 6,7,13,14,15.
IO^* (13,14,15), OI^* (11,14,15) \rightarrow -;
13,11 \rightarrow 9,11,13,14,15;
P.O.: 9,11,13,14,15.
IO^* (13,14,15), (IO)' (6,9,13,14) \rightarrow -;
14,13 \rightarrow 6,7,13,14,15;
P.O.: 6,7,13,14,15.
IO^* (13,14,15), (IO^*)' (6,7,9,11) \rightarrow -;
```

```
13,7 \rightarrow 6,7,13,14,15;
P.O.: 6,7,13,14,15.
IO* (13,14,15), (OI)' (6,9,11,14) \rightarrow -;
13,11 \rightarrow 9,11,13,14,15;
P.O.: 9,11,13,14,15.
IO^* (13,14,15), (OI^*)' (6,7,9,13) \rightarrow -;
13,7 \rightarrow 6,7,13,14,15;
P.O.: 6,7,13,14,15.
OI(7,13,15), IO(7,11,15) \rightarrow -;
7,7 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
OI(7,13,15), IO*(13,14,15) \rightarrow -;
15,15 \rightarrow 6,7,9,11,13,14,15.
P.O.: 6,7,9,11,13,14,15.
OI(7,13,15), OI(7,13,15) \rightarrow -;
7,7 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
OI(7,13,15), OI^*(11,14,15) \rightarrow -;
7,11 \rightarrow 6,7,11,14,15;
P.O.: 6,7,11,14,15.
OI(7,13,15), (IO)'(6,9,13,14) \rightarrow -;
15,13 \rightarrow 7,13,15; \quad 15,14 \rightarrow 11,14,15;
P.O.: 7,11,13,14,15.
OI(7,13,15), (IO*)'(6,7,9,11) \rightarrow -;
7,7 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
OI(7,13,15), (OI)'(6,9,11,14) \rightarrow -;
7,11 \rightarrow 6,7,11,14,15;
P.O.: 6,7,11,14,15.
OI(7,13,15), (OI^*)'(6,7,9,13) \rightarrow -;
7,7 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
OI^* (11,14,15), IO (7,11,15) \rightarrow -;
15,15 \rightarrow 6,7,9,11,13,14,15;
P.O.: 6,7,9,11,13,14,15.
OI^* (11,14,15), IO^* (13,14,15) \rightarrow -;
11,13 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
OI^* (11,14,15), OI (7,13,15) \rightarrow -;
11,13 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
OI^* (11,14,15), OI^* (11,14,15) \rightarrow -;
11,14 \rightarrow 6,7,11,14,15;
P.O.: 6,7,11,14,15.
OI^* (11,14,15), (IO)' (6,9,13,14) \rightarrow -;
11,13 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
OI^* (11,14,15), (IO^*)' \rightarrow -;
15,7 \rightarrow 7,13,15;
                      15,11 \rightarrow 11,14,15;
P.O.: 7,11,13,14,15.
OI^* (11,14,15), (OI)' (6,9,11,14) \rightarrow -;
11,14 \rightarrow 6,7,11,14,15;
P.O.: 6,7,11,14,15.
OI^* (11,14,15), (OI^*)' (6,7,9,13) \rightarrow -;
11,13 \rightarrow 7,9,11,13,15;
P.O.: 7,9,11,13,15.
```

Аналогичные вычисления для отрицаний акцидентальных суждений Васильева также не дают никакого положительного результата, в чем читатель может убедиться самостоятельно.

Выводы

- 1. Проведенные исследования показывают, что в силлогистике из одних акцидентальных суждений Васильева и их отрицаний не существует правильных модусов, а между суждениями такой силлогистики отсутствует логическое следование. Это свидетельствует о дедуктивной непригодности базисного множества из одних только акцидентальных суждений и их отрицаний и с этой точки зрения не подтверждается целесообразность называть акцидентальные суждения общими. По степени неопределенности они находятся между общими и частными суждениями Аристотеля. В то же время пренебрегать такими суждениями нельзя, поскольку в комбинации с другими суждениями квазиуниверсальной силлогистики акцидентальные суждения и их отрицания порождают 112 правильных модусов, что всего лишь на 20 модусов меньше, чем столько же суждений А. Де Моргана [8].
- 2. Результаты, полученные в настоящей статье, а также в работах автора [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33] наглядно демонстрируют, что появился эффективный и доступный широкому кругу читателей не математиков инструмент для проведения широкомасштабных исследований в силлогистике.

Литература

- 1. *Антаков С. М.* Основные идеи и задачи классической логики: Учебное пособие. Н. Новгород: Изд-во Нижегород. гос. ун-та, 2012. 174 с.
- 2. *Бажанов В. А.* Н. А. Васильев и его воображаемая логика. Воскрешение одной забытой идеи. М.: «Канон+», РООИ «Реабилитация», 2009. 240 с.
- 3. Бочаров В. А., Маркин В. И. Силлогистические теории. М.: Прогресс-Традиция, 2010. 336 с.
- 4. Васильев Н. А. Воображаемая логика. Избранные труды. М.: Наука, 1989.
- 5. *Васильев Н. А.* О частных суждениях, о треугольнике противоположностей, о законе исключенного четвертого // Учен. Зап. имп. Казан. ун-та, 1910. С. 1-47.
- 6. *Лукасевич Я*. Аристотелевская силлогистика с точки зрения современной формальной логики / Пер. с англ. М.: Изд-во иностр. лит., 1959. 316 с.
- 7. Новиков П. С. Элементы математической логики. М.: Наука, 1973. 400 с.
- 8. *Сидоренко О. И.* О базисном множестве суждений квазиуниверсальной силлогистики // Современные инновации. № 6 (8), 2016. С. 52-60.
- 9. Сидоренко О. И. Тайна силлогизма. Саратов: Изд-во Сарат. ун-та, 2000. 68 с.
- 10. Сидоренко О. И. В лабиринтах логики. Саратов: Изд-во Сарат. ун-та, 2002. 108 с.
- 11. Сидоренко О. И. Основы универсальной силлогистики. Саратов: Изд-во Сарат. ун-та, 2007. 192 с.
- 12. Cudopehko О. И. Аналитическая силлогистика миф или реальность // Математические методы в технике и технологиях ММТТ-28. № 4 (74), 2015. С. 57-59.
- 13. Сидоренко О. И. Введение в аналитическую силлогистику. Саратов: Изд. Центр «Наука», 2016. 230 с.
- 14. *Сидоренко О. И.* Что даёт переход от суждений Аристотеля к суждениям А. Де Моргана в силлогистике // Математические методы в технике и технологиях ММТТ-28. № 4 (74), 2015. С. 60-62.
- 15. *Сидоренко О. И.* О сравнении силлогистик с ограничениями на термины // Национальная ассоциация учёных. № 11 (16). Часть 2. Екатеринбург, 2015. С. 85-91.
- 16. *Сидоренко О. И.* Моделирование естественных рассуждений в силлогистике // Математические методы в технике и технологиях ММТТ-27. № 3 (62), 2014. С. 110-113.
- 17. *Сидоренко О. И.* Об аналитической силлогистике // Национальная ассоциация ученых. Т. 5. № 10. Часть 5. Екатеринбург, 2015. С. 71-75.
- 18. *Сидоренко О. И.* Силлогистика и аналитический метод // Российско-китайский научный журнал «Содружество». № 1. Часть 1. Новосибирск, 2016. С. 126-132.
- 19. *Сидоренко О. И.* О традиционной квазиуниверсальной силлогистике // Российско-китайский научный журнал «Содружество». № 2. Часть 3. Новосибирск, 2016. С. 7-15.
- 20. *Сидоренко О. И.* Об исследовании дедуктивных возможностей суждений с фиксированной степенью неопределенности в квазиуниверсальной силлогистике // Научно-образовательное содружество «Evolutio». № 1. М., 2016. С. 61-68.
- 21. *Сидоренко О. И.* О построении традиционной квазиуниверсальной силлогистики // Единый Всероссийский научный вестник. № 4 (2). М., 2016. С. 93-104.
- 22. *Сидоренко О. И.* О применении метода вычисления результирующих отношений для построения силлогистик без ограничений на термины // Ежемесячный научный журнал «Educatio». № 11 (18). Часть 3. Новосибирск, 2015. С. 104-108.
- 23. *Сидоренко О. И.* О процессе познания в традиционной квазиуниверсальной силлогистике // Российско-китайский научный журнал «Содружество». № 3 (3). Часть 1. Новосибирск, 2016. С. 107-112.
- 24. Сидоренко О. И. Построение обобщенной ортогональной силлогистики Венна семантическим методом вычисления результирующих отношений // Современные инновации (в печати).

- 25. *Сидоренко О. И.* О построении традиционной негативной силлогистики из суждений де Моргана аналитическим методом // Математические методы в технике и технологиях ММТТ-26. Т. 2. Саратов: СГТУ, 2013. С. 73-75.
- 26. Сидоренко О. И. О логической полноте систем категорических суждений в силлогистике // Математические методы в технике и технологиях ММТТ-26. Т. 2. Саратов: СГТУ, 2013. С. 75-76.
- 27. Сидоренко О. И. Об аналитическом методе решения силлогизмов // Математические методы в технике и технологиях ММТТ-26. Т. 2. Саратов: СГТУ, 2013. С. 76-77.
- 28. *Сидоренко О. И.* Об аналитическом методе вычисления результирующих отношений в силлогистике // Математические методы в технике и технологиях MMTT-29. Т. 1. Саратов, 2016. С. 108-112.
- 29. *Сидоренко О. И.* О представлении традиционной негативной силлогистики некоторой обобщенной позитивной силлогистикой // Математические методы в технике и технологиях MMTT-29. Т. 1. Саратов, 2016. С. 103-107.
- 30. Сидоренко О. И. Построение силлогистик Венна семантическим методом вычисления результирующих отношений // Современные инновации. №7 (9), 2016. С. 49-58.
- 31. Сидоренко О. И. О многозначности в силлогистике // Вопросы современной науки и практики. Университет им. В. И. Вернадского. № 4 (54), 2014. С. 53-62.
- 32. Сидоренко О. И. О многозначности в силлогистике // Математические методы в технике и технологиях – ММТТ-27. № 3 (62), 2014. С. 102-106.
- 33. *Сидоренко О. И.* Силлогистический процессор / Патент РФ № 39722. Приоритет 15.03.2004. Опубл. 10.04.2004. Бюл. № 22. С. 20.