ВОЗДЕЙСТВИЕ АНТРОПОГЕННЫХ ЗАГРЯЗНЕНИЙ АТМОСФЕРНОГО ВОЗДУХА НА ЗАБОЛЕВАЕМОСТЬ НАСЕЛЕНИЯ

ВОЗДУХА НА ЗАБОЛЕВАЕМОСТЬ НАСЕЛЕНИЯ Горская Н.А. 1 , Туленов А.Т. 2 , Омаров Б.А. 3 , Сейдалиев Н.Т. 4 , Рахымжанова М.Д. 5

¹Горская Наталия Александровна – старший научный сотрудник, магистр;
²Туленов Айдарали Туленович – кандидат технических наук, профессор;
³Омаров Берик Аманкельдиевич - старший преподаватель, магистр;
⁴Сейдалиев Нурлан Туймебекович - старший преподаватель, магистр;
⁵Рахымжанова Мадина Давранбековна – студент,

кафедра транспорта, организации перевозок и движения, факультет строительства и транспорта, Южно-Казахстанский государственный университет им. М. Ауэзова, г. Шымкент, Республика Казахстан

Аннотация: установлена статическая значимость влияния выбросов загрязняющих веществ отработавших газов автомобилей, на частоту заболевания населения болезнями системы кровообращения. Выявлен критерий оценки силы связи между выбросами загрязняющих веществ отработавших газов автомобилей и частотой заболеваний населения болезнями системы кровообращения.

Ключевые слова: автотранспорт, загрязняющие вещества, экология.

Город является сложной системой политической, экономической, социальной, культурной и экологической сфер жизни. Процесс урбанизации проявляется в изменении численности и территории города, вместе с тем возникает ряд проблем связанный с экологией, транспортом и здоровьем населения.

Одним из значительных источников загрязнения городской среды является автотранспорт. К 2016 году, по Южно-Казахстанской области эксплуатировалось 2840557 автомобилей (в областном центре, городе Шымкенте 555629 автомобилей).

Увеличение численности автомобилей привело к ухудшению условий проживания в городе Шымкенте. При проведении анализа уровня загрязнения атмосферного воздуха использовался программный комплекс «Магистраль-город» [1]. Наибольшая концентрация выбросов наблюдается вдоль магистрали в 150-ти метровой зоне на уровне 5 метров от земли.

Определена статическая значимость влияния выбросов оксида углерода и оксида азота на частоту случаев заболеваний систем кровообращения (ишемическая болезнь сердца, артериальная гипертония, хроническая сердечная недостаточность, ревматическая болезнь сердца) у населения, проживающего в непосредственной близости относительно наиболее загруженного перекрестка пр. Республики - ул. Аскарова и населения проживающего за 150-ти метровой зоной перекрестка. Анализ заболеваемости выполнен на основании данных по количеству проживающего населения на территории, обслуживаемой участком центральной поликлиникой города.

Воспользуемся, критерием χ^2 Пирсона, анализируя таблицу 1, содержащую сведения о частоте заболевания системы кровообращения в зависимости от наличия фактора риска (выбросов загрязняющих веществ).

	Болезни системы кровообращения есть (1)	Болезни системы кровообращения нет (0)	Всего
Выбросы ЗВ в зоне перекрестка (1)	51	157	208
Выбросы ЗВ вне зоны перекрестка (0)	21	207	228
Всего	72	364	436

Таблица 1. Четырехпольная таблица сопряженности

Найдем значение критерия χ^2 Пирсона по формуле

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - E_{ij})^2}{E_{ij}},$$
 (1)

где i – номер строки (от 1 до r), j – номер столбца (от 1 до c),

 O_{ij} - фактическое количество наблюдений в ячейке ij,

 E_{ij} – ожидаемое число наблюдений в ячейке іј.

Полученные результаты представлены в таблицах 2 и 3.

Таблица 2. Критерии оценки значимости частоты заболеваний населения болезнями системы кровообращения, в зависимости от выбросов загрязняющих веществ отработавших газов автомобилей

Наименование критерия	Значение критерия	Уровень значимости
Критерий χ^2	18,490	p< 0,01
Критерий χ^2 с поправкой Йейтса	17,396	p< 0,01
Критерий χ^2 с поправкой на правдоподобие	18,862	p< 0,01

Таблица 3. Критерии оценки силы связи между выбросами загрязняющих веществ отработавших газов автомобилей и частотой заболеваний населения болезнями системы кровообращения

Наименование критерия	Значение критерия	Сила связи
Критерий φ		
Критерий V Крамера	0,206	средняя
Критерий К Чупрова		
Коэффициент сопряженности Пирсона (С)	0,202	средняя
Нормированное значение коэффициента Пирсона (С)	0,285	средняя

По полученным данным зависимость частоты заболеваний населения болезнями системы кровообращения от выбросов загрязняющих веществ автомобилей статистически значима.

Список литературы

1. *Туленов А.Т., Горская Н.А. и др.* Методы определения выбросов загрязняющих веществ автотранспортом // Журнал «Актуальные проблемы современной науки». М.: Издательство Спутник, 2015. № 2 (81). С. 152-154.