МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ТОЧЕЧНОГО ИЗЛУЧАТЕЛЯ В МЕЛКОМ МОРЕ

Корчака А.В.

Корчака Анатолий Владимирович – аспирант, Инженерная Школа Дальневосточный федеральный университет, г. Владивосток

Аннотация: в статье рассмотрены вопросы анализа волновых полей с использованием математического аппарата теории функций Грина. Приведен математический алгоритм, позволяющий производить моделирование поля точечного гидроакустического излучателя. Представлены результаты численных экспериментов, подтверждающие применимость приведенной модели для практических расчетов.

Ключевые слова: анализ волновых полей, направленная функция Грина, точечный излучатель, математический алгоритм.

Введение

Множество практических задач освоения Мирового океана, подводной связи, поиска подводных объектов, требуют анализа волновых полей. Вопросам разработки методов анализа посвящено множество работ. Некоторые результаты исследований представлены в монографиях [1 - 4]. Область применения известных методов ограничена. Имеется множество задач, для которых в настоящее время не существует методов расчета, которые давали бы возможность проводить эксперименты с приемлемой точностью и скоростью вычислений [5].

Основная сложность заключатся в определении поля в среде с неоднородными параметрами. В ряде случаев неоднородность можно аппроксимировать моделью однородной среды с присутствующими в ней замкнутыми областями, параметры которых отличны от параметров внешней среды.

В настоящей работе предлагается решение задачи анализа точечного гидроакустического излучателя с использованием метода направленных функций Грина. Базовые принципы метода изложены в [6], различные подходы к использованию рассмотрены в работах [7 - 10] и др.

Постановка задачи

Пусть, в единичном объеме с известными параметрами находится точечный гидроакустический излучатель. Исходя из заданных характеристик излучателя, его расположения и параметров среды требуется определить давление на некоторой поверхности в среде расположения излучателя.

В общем случае, задача анализа волнового поля подразумевает решение уравнения Гельмгольца:

$$\Delta P + \left(\frac{\omega}{c}\right) \times P = \delta(r - r_0).$$
 (1)

Решение волнового уравнения при ${\bf r}_0=0$ представляется в виде ненаправленной сферической функции:

$$P(r) = P_0 \frac{e^{ikr}}{r} \tag{2}$$

Для разделения переменных воспользуемся методом направленных функций Грина.

Диаграммная функция n-ного излучателя представляется в виде следующего аналитического выражения:

$$Pn = \frac{i}{2 \times \pi} - \int_{Un_{min}}^{Un_{max}} \frac{Fn(Un)}{\sqrt{k^2 - Un^2}} \times e^{(i \times \left((x - x_0) \times \sqrt{k^2 - Un^2}\right) + (y(x) - y_0) \times Un)} dUn, \tag{3}$$

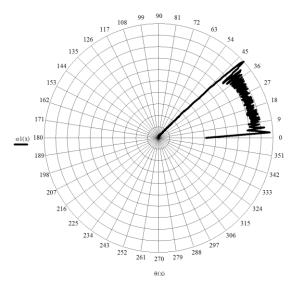
гле:

Fn - направленная функция;

$$Fn = \begin{cases} 1, & ecлu\ Un_{min} \leq Un \leq Un_{max} \\ 0, & npu\ ocmaльных\ значениях\ U\ u\ в\ зоне\ видимости' \end{cases}$$

Un – обобщенные угловые координаты,

х0, у0 – координаты излучателя.


Для получения расчетных графиков направленных функций Грина, для точечных источников, проведем численные эксперименты с выражением (3) на ЭВМ с применением программной среды MathCad.

Результаты расчетов

Исходные данные для точечного излучателя №1 (Рисунок 1):

- координаты излучателя: x = 0.1; y = 0.1;
- частота: f=5 кГц;
- длина волны: $\lambda = 0.3$ м;
- скорость распространения звука: c=1500 м/c;

- угол раскрыва: 45 deg.

 $Puc.\ 1.\ Hanpaвленная\ функция\ Грина\ точечного\ излучателя\ No\ 1$

Исходные данные для точечного излучателя №2 (Рисунок 2):

- координаты излучателя: x = 10; y = 10;
- частота: $f = 5 \ к\Gamma$ ц;
- длина волны: $\lambda = 0.3$ м;
- скорость распространения звука: с=1500 м/с;
- угол раскрыва: 45 deg.

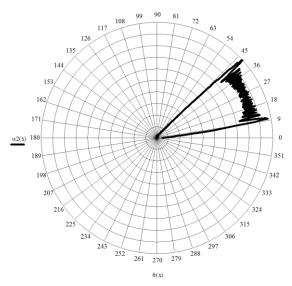


Рис. 2. Направленная функция Грина точечного излучателя №2

Исходные данные для точечного излучателя №3 (Рисунок 3):

- координаты излучателя: x = 0.1; y = 0.1;
- частота: f=0,5 кГц;
- длина волны: $\lambda = 3$ м;
- скорость распространения звука: c=1500 м/с;
- угол раскрыва: 45 deg.

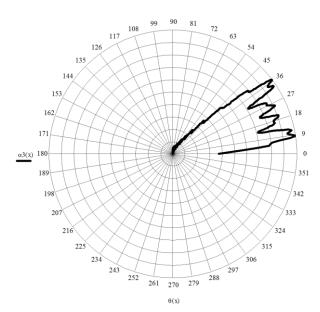


Рис. 3. Направленная функция Грина точечного излучателя № 3

Анализ результатов

Графики (Рис. 1-3) иллюстрируют представление полей точечных излучателей при различных частотах на разных расстояниях от начала координат.

График сферической функции (2) представляет собой идеальную окружность. Колебания графиков (Рис. 1-3) относительно окружности обусловлены погрешностью аналитического решения уравнения Гельмгольца по расчетной модели (3).

Максимальная ошибка для излучателей № 1-2 представляется в интервалах углов 0-15° и 36-45°. Для излучателя №3 погрешность вычислений стабильна во всем представленном интервале (0-45°).

В сравнении графиков Рис. 1 и Рис. 3 видно, что в частном случае, при прочих равны условиях, погрешность вычислений увеличивается с уменьшением заданной частоты.

Выводы

Практическая проверка представленного алгоритма доказывает возможность моделирования поля точечного гидроакустического излучателя. Получаемая информация, позволяет проводить теоретический анализ волнового поля - решать задачу анализа точечного излучателя в заданных условиях.

Гибкость представленного подхода, позволит в дальнейшем усложнять поставленные задачи, приближаясь к реальным условиям: производить моделирование полей антенных решеток с большим количеством излучателей, учитывать волны, отраженные на границах раздела сред.

Универсальность подхода заключается в доступности аппаратного и программного обеспечения и малых временных затратах на выполнение вычислений (время расчета 1 варианта – не более 1 минуты).

Список литературы

- 1. *Жуков В.Б.* Расчет гидроакустических антенн по диаграмме направленности. Л.: Судостроение, 1972.
- 2. Шендеров Е.Л. Волновые задачи гидроакустики. Л.: Судостроение, 1972. 348 с.
- 3. Бреховских Л.М. Волны в слоистых средах. М.: Из-во АН СССР, 1957. 502 с.
- 4. *Субботин А.Г.* Синтез гидроакустических антенн в однородных волноводах: диссертация на соискание ученой степени канд. ф-м. наук. Владивосток 1995. 156 с.
- 5. Шевкун С.А. Разработка методов анализа волновых полей в замкнутых объемах: диссертация на соискание ученой степени канд. ф-м. наук. Владивосток, 2006. 186 с.
- 6. *Короченцев В.И.* Волновые задачи теории направленных и фокусирующих антенн. Владивосток, 1998. 198 с.
- 7. *Короченцев В.И., Розенбаум А.Н.* Анализ и синтез связи управления движением подводных объектов по аномалиям физически полей. Владивосток, Институт автоматики и процессов управления, Дальнаука, 2007. 185 с.
- 8. *Абдрашитов А.Г., Белаш А.П., Волков П.А., Короченцев В.И.* Анализ и синтез линзовых антенн для рыбопоисковых локаторов // Вестник Камчатского государственного технического университета, 2013. № 23. С. 5–9.

- 9. *Korochentsev V.I.*, *Zorchenko N.K.*, *Potapenko A.A*. Methods for reducing the error of sonar equipment in sea wedge // 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM 2017). Chelyabinsk. Russia. 16-19 May, 2017. P. 1432-1435.
- (ICIEAM 2017). Chelyabinsk. Russia. 16-19 May, 2017. Р. 1432-1435. 10. Короченцев В.И., Губко Л.В., Мироненко М.В., Горасев И.В. Трехмерная неоднородная модель морской среды // Известия ЮФУ. Технические науки, 2016. № 10 (183). С. 65–79.