Цветков Н. В., Губарев А. С., Сеньчукова А. С., Серкова Е. С., Шифрина З. Б. Гидродинамические характеристики сверхразветвленных пиридилфениленовых полимеров и нанокомпозитов на их основе // Современные инновации №12(14) / VI Международная научно-практическая конференция «Современные инновации: от теории к практике»- 17 декабря 2016 {см. журнал}. Тип лицензии на данную статью – CC BY 3.0. Это значит, что Вы можете свободно цитировать данную статью на любом носителе и в любом формате при указании авторства.
Цветков Николай Викторович / Tsvetkov Nikolay Victorovich – доктор физико-математических наук, профессор;
Губарев Александр Сергеевич / Gubarev Alexander Sergeevich – кандидат физико-математических наук, старший преподаватель;
Сеньчукова Анна Сергеевна / Senchukova Anna Sergeevna – магистрант, кафедра молекулярной биофизики и физики полимеров, Санкт-Петербургский государственный университет, г. Санкт-Петербург;
Серкова Елена Сергеевна / Serkova Elena Sergeevna – младший научный сотрудник;
Шифрина Зинаида Борисовна / Shifrina Zinaida Borisovna – доктор химических наук, лаборатория макромолекулярной химии, Институт элементоорганических соединений им. А. Н. Несмеянова Российская академия наук, г. Москва
Аннотация: проведен синтез сверхразветвленных пиридилфениленовых полимеров и получены композиты полимера с оксидом железа методом высокотемпературного разложения ацетилацетоната железа (III) в присутствии исходного полимера. Установлены гидродинамические характеристики синтезированных образцов в растворах тетрагидрофурана. Методом скоростной седиментации проведено сопоставление распределений исходного полимера и композита, полученного на его основе. Определены молекулярные массы и размеры синтезированных объектов.
Abstract: the hyperbranched pyridylphenylene polymers were synthesized and the polymer composites with iron oxides were prepared by high temperature dissociation of tris(acetylacetonato)iron(III) with addition of initial polymer. The hydrodynamical characteristics of the sunthesized samples were studied in tetrahydrofuran solutions. By means of velocity sedimentation the comparison of distributions for initial polymer with its composite was performed. The molecular masses and hydrodynamic diameters were determined for the synthesized samples.
Ключевые слова: металлические наночастицы, сверхразветвленные пиридилфениленовые полимеры, характеристики предельно разбавленных растворов, гидродинамические размеры, молекулярные массы.
Keywords: metal nanoparticles, hyperbranched pyridylphenylene polymers, dilute solutions properties, hydrodynamic diameters, molecular masses.
Литература
1. Polshettiwar V., Luque R., Fihri A. et al. Magnetically Recoverable Nanocatalysts // Chem. Rev., 2011. V. 111. № 5. P. 3036-3075.
2. Lu A. H., Salabas E. L., Schüth F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application // Angew. Chem. Int. Ed., 2007. V. 46. № 8. P. 1222-1244.
3. Tietze R., Zaloga J., Unterweger H. et al. Magnetic nanoparticle-based drug delivery for cancer therapy // Biochem. Biophys. Res. Commun., 2015. V. 468. № 3. P. 463-470.
4. Morgan D. G., Boris B. S., Kuchkina N. V. et. al. Multicore Iron Oxide Mesocrystals Stabilized by a Poly(phenylenepyridyl) Dendron and Dendrimer: Role of the Dendron / Dendrimer Self-Assembly // Langmuir, 2014. V. 30. № 28. P. 8543-8550.
5. Kuchkina N. V., Zinatullina M. S., Serkova E. S. et al. Hyperbranched pyridylphenylene polymers based on the first-generation dendrimer as a multifunctional monomer // RSC Advances, 2015. V. 5. № 120. P. 99510.
6. Tsvetkov N. V., Gubarev A. S., Lebedeva E. V. et al. Conformational and Hydrodynamic Parameters of Hyperbranched Pyridylphenylene Polymers // Polym. Int., 2016 (in press, DOI: 10.1002/pi.5298).
7. Pavlov G. M., Perevyazko I. Y. et al. Conformation parameters of linear macromolecules from velocity sedimentation and other hydrodynamic methods // Methods, 2011. V. 54. № 1. P. 124-135.
8. Kratky O., Leopold H., Stabinger H. The determination of the partial specific volume of proteins by the mechanical oscillator technique // Methods Enzymol., 1973. V. 27, P. 98-110.
9. Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling // Biophys. J. 2000. V. 78. № 3. P. 1606-1619.
10. Scott D. J., Harding S. E., Rowe A. J. Analytical Ultracentrifugation: Techniques and Methods. RSC Publishing: Cambridge, 2006. P. 587.
11. Tsvetkov V. N., Eskin V. E., Frenkel S. Y. Structure of Macromolecules in Solution. The National Lending Library for Science and Technology: Boston, 1971. P. 762.
12. Tsvetkov V. N. Rigid-chain polymers. Consult. Bureau. Plenum.: London, 1989. P. 490.
13. Schuck P., Zhao H., Brautigam C. A. Ghirlando R. Basic Principles of Analytical Ultracentrifugation. CRC Press, 2016. P. 302.
14. Pavlov G. M. Normalized Kuhn-Mark-Houwink-Sakurada relationships // Polym. Sci. A., 2005. V. 47. № 10. P. 1129-1134.
15. Tsvetkov N. V., Filippov S. K., Kudryavtseva T. M. et al. Hydrodynamic properties of rigid pyridine-containing poly(phenylene) dendrimers in solutions // Polym. Sci. A., 2006. V. 48. № 4. P. 450-455.
Издательство «Проблемы науки»
Follow usСледуйте за нами в социальных сетях