Усов А.Е., Варламов А.А., Бабкин О.В., Дос Е.В., Мостовщиков Д.Н.
Усов Алексей Евгеньевич – ведущий архитектор;
Варламов Александр Александрович – старший архитектор;
Бабкин Олег Вячеславович – старший архитектор;
Дос Евгений Владимирович – архитектор;
Мостовщиков Дмитрий Николаевич – старший архитектор,
системный интегратор «Li9 Technology Solutions»,
г. Райли, Соединенные Штаты Америки
Аннотация: рассмотрены методы нечеткой кластеризации, в частности применение метода нечетких c-средних. Показана необходимость построения теоретической методологии использования метода нечетких c-средних. Рассмотрены модели нечеткой кластеризации, которые базируются на концепции смесей вероятностных распределений, а также введении в статистическую модель алгоритмов нечеткой регулируемой коррекции. При этом метод нечетких c-средних, основанный на энтропийной регуляризации, рассматривается в рамках модели смеси гауссовых распределений и фаззификации, сравнивается по эффективности с классическим методом нечетких c-средних. Помимо этого, концепция регуляризации обсуждается в контексте нечеткой бикластеризации, а также рассматривается полиноминальная модель кластеризации. На основе результатов экспериментальной верификации данных моделей показано, что модель нечеткой кластеризации, которая базируется на концепции смесей вероятностных распределений и введении в статистическую модель алгоритмов нечеткой регулируемой коррекции демонстрирует улучшение интерпретируемости разбиения объекта на кластеры.
Ключевые слова: информационные системы, метод нечетких c-средних, метод энтропийной регуляризации, смеси гауссовых распределений, фаззификация, нечеткая бикластеризация, полиноминальная модель кластеризации.
Список литературы
- Haqiqi B.N. & Kurniawan R., Analisis Perbandingan Metode Fuzzy C-Means Dan Subtractive Fuzzy C-Means. Media Statistika, 8 (2). doi:10.14710/medstat.8.2.59-67.
- Lee S., Kim J. & Jeong Y., Various Validity Indices for Fuzzy K-means Clustering. Korean Management Review, 46(4), 1201-1226. doi:10.17287/kmr.2017.46.4.1201.
- Yasuda M., Q-increment deterministic annealing fuzzy c-means clustering using Tsallis entropy. 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). doi:10.1109/fskd.2014.6980802.
- Chen S., An improved fuzzy decision analysis framework with fuzzy Mahalanobis distances for individual investment effect appraisal. Management Decision, 55(5), 935-956. doi:10.1108/md-11-2015-0512.
- Baili N., Unsupervised and semi-supervised fuzzy clustering with multiple kernels. Louisville, KY: University of Louisville.
- Lee J. & Lee J., K-means clustering based SVM ensemble methods for imbalanced data problem. 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS). doi:10.1109/scis-isis.2014.7044861.
- A New Membership Function on Hexagonal Fuzzy Numbers. (2015). International Journal of Science and Research (IJSR), 5(5), 1129-1131. doi:10.21275/v5i5.nov163626.
- Miyamoto S., Ichihashi Н. and Honda K. Algorithms for Fuzzy Clustering. Springer, 2008.
- Miyamoto S. and Umayahara К. “Fuzzy clustering by quadratic regularization,” Proc. 1998 IEEE Int. Conf. Fuzzy Systems and IEEE World Congr. Computational Intelligence. Vol. 2. Pp. 1394–1399, 1998.
- Bishop C.M. Neural Networks for Pattern Recognition, Clarendon Press, 1995.
- Hualde J. & Robinson P.M., Gaussian pseudo-maximum likelihood estimation of fractional time series models. The Annals of Statistics, 39(6), 3152-3181. doi:10.1214/11-aos931.
- Lewis R.H., Paláncz B. & Awange J., Application of Dixon resultant to maximization of the likelihood function of Gaussian mixture distribution. ACM Communications in Computer Algebra, 49(2), 57-57. doi:10.1145/2815111.2815138.
- Ichihashi Н., Miyagishi К. and Honda К. “Fuzzyc-means clustering with regularization by K-L information”, Proc. of 10th IEEE International Conference on Fuzzy Systems, Vol.2, Pp. 924–927, 2001.
- Honda К. and Ichihashi Н. “Regularized linear fuzzy clustering and probabilistic PCA mixture models”, IEEE Trans. Fuzzy Systems. Vol. 13. № 4. 508–516, 2005.
- Ichihashi H., Notsu A. & Honda K., Semi-hard c-means clustering with application to classifier design. International Conference on Fuzzy Systems. doi:10.1109/fuzzy.2010.5584553
- Oh C.-H., Honda К. and Ichihashi Н. “Fuzzy clustering for categorical multivariate data,” Proc. of Joint 9th IFSA World Congress and 20th NAFIPS International Conference. Pp. 2154–2159, 2001.
- Kummamuru К., Dhawale А. and Krishnapuram R. “Fuzzy co-clustering of documents and keywords,” Proc. 2003 IEEE Int’l Conf. Fuzzy Systems. Vol. 2. Pp. 772–777, 2003.
- Rigouste L., Cappé О.and Yvon F. “Inference and evaluation of the multinomial mixture model for text clustering,” Information Processing and Management, Vol. 43, no. 5, Pp. 1260–1280, 2007.
- Honda К., Oshio S. and Notsu А. “Fuzzy co-clustering induced by multinomial mixture models,” Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 19, no. 6, pp. 717–726, 2015.
- Kumar P. & Chaturvedi A., Probabilistic query generation and fuzzyc-means clustering for energy-efficient operation in wireless sensor networks. International Journal of Communication Systems, 29(8), 1439-1450. doi:10.1002/dac.3112.
- Wang Z., Wang L., Dang H. & Pan L., Web clustering based on hybrid probabilistic latent semantic analysis model. Journal of Computer Applications, 32 (11), 3018-3022. doi:10.3724/sp.j.1087.2012.03018.
- Raveendran R. & Huang B., Mixture Probabilistic PCA for Process Monitoring - Collapsed Variational Bayesian Approach. IFAC-PapersOnLine, 49(7), 1032-1037. doi:10.1016/j.ifacol.2016.07.338.
Ссылка для цитирования данной статьи
|
|
Тип лицензии на данную статью – CC BY 4.0. Это значит, что Вы можете свободно цитировать данную статью на любом носителе и в любом формате при указании авторства. |
Ссылка для цитирования. Усов А.Е., Варламов А.А., Бабкин О.В., Дос Е.В., Мостовщиков Д.Н. ПРИМЕНЕНИЕ ПАРАДИГМЫ НЕЧЕТКОЙ КЛАСТЕРИЗАЦИИ И БИКЛАСТЕРИЗАЦИИ ПРИ МОНИТОРИНГЕ ИНФРАСТРУКТУРЫ ЦЕНТРОВ ОБРАБОТКИ ДАННЫХ // IX Международная научно-практическая конференция «Современные инновации в эпоху глобализации: теория, методология, практикаl» (Россия. Москва. 20 августа 2019). С. {см. сборник}.
|
Издательство «Проблемы науки»
Follow usСледуйте за нами в социальных сетях